
JMLR: Workshop and Conference Proceedings 34:182–192, 2014 Proceedings of the 12th ICGI

An example distribution for probabilistic query learning of
simple deterministic languages

Yasuhiro Tajima tajima@cse.oka-pu.ac.jp

Genichiro Kikui kikui@cse.oka-pu.ac.jp

Department of Systems Engineering, Okayama Prefectural University

Editors: Alexander Clark, Makoto Kanazawa and Ryo Yoshinaka

Abstract

In this paper, we show a special example distribution on which the learner can guess a
correct simple deterministic grammar in polynomial time from membership queries and
random examples. At first, we show a learning algorithm of simple deterministic languages
from membership and equivalence queries. This algorithm is not a polynomial time algo-
rithm but, assuming a special example distribution, we can modify it to the polynomial
time probabilistic learning algorithm.

Keywords: Learning via query, Sample distribution, Simple deterministic language

1. Introduction

Polynomial time query learning of sub-classes of context-free language is difficult. If the
equivalence problem is unsolvable then such the language class can not be learnable in
polynomial time by (de la Higuera, 1997). This result has been lead from the studies of
teachability(Goldman and Mathias, 1996) and its application to grammatical inference.

Simple deterministic languages are subclass of context-free languages but whose equiv-
alence problem can be solvable in polynomial time(Wakatsuki and Tomita, 1991). Its poly-
nomial consists of the size of the grammars and the “thickness” which is the longest length
among the set of shortest words generated by every nonterminal in the grammar. This pa-
rameter is important for learning algorithm(Tajima et al., 2004) and teachability(Tajima,
2013).

In this paper, we show a special example distribution for polynomial probabilistic learn-
ing of simple deterministic languages. On this distribution, simple deterministic languages
are polynomial time learning from membership queries and random examples. This distri-
bution is written by restrictions of the grammar which generates the target language. That
is appearance probability of every nonterminal is higher than that of any other words with
the length more than two. This algorithm made by modifying the algorithm in (Tajima
et al., 2004).

2. Preliminaries

A context-free grammar (CFG for short) is a 4-tuple G = (N,Σ , P, S) where N is a finite
set of nonterminals, Σ is a finite set of terminals, P is a finite set of rewriting rules (rules
for short) and S ∈ N is the start symbol. Let ε be the word whose length is 0. If there exists

c© 2014 Y. Tajima & G. Kikui.

An example distribution of SDL

no rule of the form A→ ε for any A(6= S) ∈ N , then G is called ε-free. If G = (N,Σ , P, S)
is ε-free and any rule in P is of the form A→ aβ then G is said to be in Greibach normal
form(Harrison, 1978), where A ∈ N, a ∈ Σ and β ∈ N∗. Moreover, a CFG G in Greibach
normal form is called in 2-standard form if every rule A → aβ in P satisfies that |β| ≤ 2.
In this paper, |β| denotes the length of β if β is a string and |W | denotes the cardinality of
W if W is a set.

Let A → aβ be in P where A ∈ N , a ∈ Σ and β ∈ N∗. Let γ and γ′ ∈ (N ∪ Σ)∗.

Then γAγ′⇒
G
γaβγ′ denotes the derivation from γAγ′ to γaβγ′ in G. We define

∗⇒
G

to be

the reflexive and transitive closure of ⇒
G

. When it is not necessary to specify the grammar

G, α ⇒ α′ and α
∗⇒β stand for α⇒

G
α′ and α

∗⇒
G
β, respectively. A word generated from

γ ∈ (N ∪ Σ)∗ by G is w ∈ Σ ∗ such that γ
∗⇒
G
w and the language generated from γ by G

is denoted by LG(γ) = {w ∈ Σ ∗ | γ ∗⇒
G
w}. A word generated from S by G for the start

symbol S is called a word generated by G and the language generated by G is denoted by
L(G) = LG(S). For every CFG G, there exists a CFG G2 which is in Greibach normal form
and in 2-standard form such that L(G) = L(G2)(Harrison, 1978). A nonterminal A ∈ N is

said to be reachable if S
∗⇒
G
wAβ for some w ∈ Σ ∗, β ∈ N∗, and a nonterminal D ∈ N is

said to be live if LG(D) 6= ∅.
A CFG G is a simple deterministic grammar (SDG for short) iff there exists at most one

rule which is of the form A → aβ for every pair of A ∈ N and a ∈ Σ , i.e. if A → aβ is in
P then A→ aγ is not in P for any γ ∈ N∗ such that γ 6= β(Korenjak and Hopcroft, 1966).
We note that there exists exactly one derivation for each w ∈ L(G) in an SDG G. The
language generated by an SDG is called a simple deterministic language (SDL for short).
In addition, such a set P of rules is called simple deterministic. Also there exists an SDG
G2 which is in 2-standard form for every SDG G such that L(G2) = L(G)(Harrison, 1978).
Thus, we assume that every SDG is in 2-standard form throughout this paper.

For w ∈ Σ+, proper pre(w) = {w′ ∈ Σ+ | w′w′′ = w,w′′ ∈ Σ+} is called a set of
proper prefixes of w. Without loss of generality, we assume an order ≤Σ on Σ and Σ can
be denoted by Σ = (a1, a2, · · · a|Σ |) by ≤Σ .

We assume that Gh = (Nh,Σ , Ph, Sh) denotes a hypothesis SDG which is guessed by
the learner, Lt denotes the target language which is an SDL.

A membership query MEMBER(w) for w ∈ Σ ∗ on an SDL Lt is defined as follows.

MEMBER(w)

Input : w ∈ Σ ∗.

Output :

{
1 . . . if w ∈ Lt,
0 . . . if w 6∈ Lt.

An equivalence query EQUIV (Gh) for an SDL Lt and a hypothesis SDG Gh is defined
as follows.

EQUIV (Gh)

Input : an SDG Gh.

183

Tajima Kikui

Output :

{
yes . . . if L(Gh) = Lt,
no and w ∈ (Lt − L(Gh)) ∪ (L(Gh)− Lt) . . . if Lt 6= L(Gh).

Assume an SDG Gt = (Nt,Σ , Pt, St) such that Lt = L(Gt). Suppose a probability
distribution on Σ ∗ and Pr(w) which is the probability for w ∈ Σ ∗. We can define the
probability for every rule A→ aβ in Pt as follows;

Pr(A→ aβ) =
∑

w∈Z(A→aβ)

Pr(w)

where
Z(A→ aβ) = {w ∈ Σ ∗ | St

∗⇒α1Aα2 ⇒ α1aβα2
∗⇒w}

for some α1, α2 ∈ (N ∪ Σ)∗. That is to say, Pr(A → aβ) is the appearing probability of
A→ aβ when a sample word is given. In addition, we can define the probability for every
x ∈ Nt ∪ Σ as follows;

Z(x) =
⋃

∀A∈Nt,∀a∈Σ ,∀β∈N∗
t

Z(x→ aβ) ∪ Z(A→ xβ)

Pr(x) =
∑

w∈Z(x)

Pr(w).

That is to say, Pr(x) is the appearing probability of x in the derivation of a sample word.
Probably approximately correct (PAC for short) is a criterion introduced by (Valiant,

1984). For the target language Lt, the learner guesses a hypothesis Gh which satisfies that

Pr(P (Lt∆L(Gh)) ≤ ε) ≥ 1− δ

for given 0 < ε ≤ 1 and 0 < δ ≤ 1. Here,

P (Lt∆L(Gh)) =
∑

w∈(Lt−L(Gh))∪(L(Gh)−Lt)

Pr(w).

Equivalence queries in an exact learning algorithm can be replaced by polynomial num-
ber of random examples.

Theorem 1 ((Angluin, 1987)) A learning algorithm which uses equivalence queries can
be converted to a probabilistic learning algorithm without equivalence queries. In the con-
verted algorithm, ni random examples are needed instead of i-th equivalence query in the
original algorithm where

ni =
1

ε

(
ln

1

δ
+ (ln 2)(i+ 1)

)
.

3. SDL learning algorithm via membership queries and a representative
sample

In (Tajima et al., 2004), we have shown the learning algorithm of SDLs via a representative
sample and membership queries.

184

An example distribution of SDL

Definition 2 Let G = (N,Σ , P, S) be an SDG such that every A ∈ N is reachable and live.
Let Q be a finite subset of L(G). Then Q is a representative sample (RS for short) of G iff
the following holds.

• For any A → aβ in P , there exists a word w ∈ Q such that S
∗⇒xAγ ⇒ xaβγ

∗⇒w
for some x ∈ Σ ∗ and γ ∈ N∗.

From this definition, for any SDG G = (N,Σ , P, S), there exists an RS Q such that |Q| ≤
|P |.

Definition 3 For an SDL L, a finite set Q ⊆ L is an RS iff there exists an SDG G =
(N,Σ , P, S) such that L(G) = L and Q is an RS of G.

The definition of an RS for an SDL is independent of representation. Though it is possible
that Q is an RS for an SDG G1 and is not that of an SDG G2 where L(G1) = L(G2) = Lt,
Q is an RS for Lt. It implies that the teacher in this learning setting does not have to
suppose a target SDG during the learning process, though we suppose a certain target
SDG to construct an RS prior to our learning process. We can find an RS of an SDG
G = (N,Σ , P, S) in time of a polynomial of |N |, |Σ | and the thickness k of G.

The following Ishizaka’s lemma holds.

Lemma 4 ((Ishizaka, 1990) Lemma 10) For any nonterminal A(6= St) ∈ Nt which is
reachable and live, and for any w ∈ L(Gt) such that

• wpwmws = w where wp, wm ∈ Σ+, ws ∈ Σ ∗, and

• St
∗⇒wp ·A · ws

∗⇒w,

it holds that u ∈ LGt(A) for u ∈ Σ+ iff

• MEMBER(wp · u · w′s) = 1 and

• for any u′ ∈ proper pre(u), MEMBER(wp · u′ · w′s) = 0 where w′s is the shortest
suffix of ws such that wpwmw

′
s ∈ L(Gt).

Assume a derivation S
∗⇒
G
pAs

∗⇒
G
pms for A ∈ N , p, s ∈ Σ ∗ and m ∈ Σ+. Let r = (p,m, s)

and w ∈ Σ+. Now, we can define the the function T as

T (r, w) =


1 (if MEMBER(p · w · short(r)) = 1, and

for all w′ ∈ proper pre(w),
MEMBER(p · w′ · short(r)) = 0),

0 (otherwise),

here short(r) is the shortest suffix of s such that MEMBER(p ·m · short(r)) = 1.
Let Q ⊆ Lt. The set of nonterminal candidates R is the following set:

R = {(wp, wm, ws) ∈ Σ+ × Σ+ × Σ ∗ | wpwmws ∈ Q}
∪{(ε, w, ε) | w ∈ Q}

185

Tajima Kikui

Let W = {y ∈ Σ+ | xyz ∈ Q, x, z ∈ Σ ∗}. The equivalence relation
π
= is defined for

r, r′ ∈ R as
r
π
= r′ ⇐⇒ T (r, w) = T (r′, w)

for any w ∈W . Let B(r, π) = {r′ ∈ R | r′ π= r}, here π is the partition over R by
π
=.

Consider the following CFG Gall with the equivalence relation
π
=.

Gall = (R/π,Σ , Pall/π, Sall)

R/π = {B(r, π) | r ∈ R},
Pall/π = {B((wp, a, ws), π)→ a | a ∈ Σ , wp, ws ∈ Σ ∗, (wp, a, ws) ∈ R}

∪{B((wp, awm, ws), π)→ a ·B((wpa,wm, ws), π) | a ∈ Σ ,

wp, ws ∈ Σ ∗, wm ∈ Σ+, (wp, awm, ws), (wpa,wm, ws) ∈ R}
∪{B((wp, awm1wm2, ws), π)→
a ·B((wpa,wm1, wm2ws), π) ·B((wpawm1, wm2, ws), π) |
a ∈ Σ , wp, ws ∈ Σ ∗, wm1, wm2 ∈ Σ+,

(wp, awm1wm2, ws), (wpa,wm1, wm2ws), (wpawm1, wm2, ws) ∈ R},
Sall = B((ε, w, ε), π),

where w ∈ Q. In our past algorithm(Tajima et al., 2004), deleting rules from Pall/π by
some conditions.

condition 1 For every rule which is of the form A→ aB in Pall/π:
If there exists w ∈ W such that aw ∈ W and T (rA, aw) 6= T (rB, w) where rA ∈

B(rA, π) = A and rB ∈ B(rB, π) = B, then A→ aB should be removed from Pall/π.
This condition means that A → aB is incorrect when B can generate w but A cannot

generate aw or vice versa.

condition 2 For every rule which is of the form A→ aBC in Pall/π: If

• there exists w ∈W such that aw ∈W , T (rA, aw) = 1 and

T (rB, w1) = 0 or T (rC , w2) = 0

for any w1, w2 ∈ W with w1w2 = w here rA ∈ B(rA, π) = A, rB ∈ B(rB, π) = B and
rC ∈ B(rC , π) = C, or

• there exist w1, w2 ∈W such that aw1w2 ∈W , T (rA, aw1w2) = 0 and

T (rB, w1) = 1 and T (rC , w2) = 1

then A→ aBC should be removed from Pall/π.
This condition means that A→ aBC is incorrect when BC can generate w but A cannot

generate aw or vice versa.

Definition 5 We define the following for every A ∈ R/π.

ΣT (A) = {a ∈ Σ | T (r, a · w) = 1 for some a · w ∈W here A = B(r, π)}.
ΣP (A) = {a ∈ Σ | A→ aβ is in Pall/π for some β ∈ (R/π)∗}.

186

An example distribution of SDL

If ΣT (A) = ΣP (A) then A is called valid. On the other hand, if ΣT (A) 6= ΣP (A) then
A is called invalid. If A corresponds to some nonterminal in the SDL which generates the
target language, then ΣP (A) ⊇ ΣT (A) because all rules in Pall/π are made from positive
examples. In addition, any word a · w is called invalid word if it causes that A is invalid.

Suppose that γ = A1A2 · · ·An ∈ (R/π)+ and Ai ∈ R/π (i = 1, . . . , n), then γ is valid if
Ai ∈ R/π is valid for every i = 1, . . . , n. Conversely, γ is invalid if there exists Aj ∈ R/π
which is invalid for some 1 ≤ j ≤ n.

Now, we assume that all rules which meet the above conditions have been removed from
Pall/π. Then,

condition 3 For every rule in Pall/π which is of the form A→ aβ where β ∈ (R/π)+ :
If β is invalid then A→ aβ should be removed from Pall/π.
This condition means that A→ aβ is incorrect when β contains B ∈ R/π such that B

should generate a word whose first symbol is b ∈ Σ for example, but Pall/π contains no rule
which is of the form B → bγ for any γ ∈ (R/π)∗, or vice versa.

Then increasing W by checking SDGs among Pall/π, the learner updates Gall. Assume
an order over all members in Pall/π denoted by ≤P , arbitrarily. Let P (A, a) be a rule
A → aβ in Pall/π such that P (A, a) ≤P A → aγ for any γ ∈ (R/π)∗. For a rule in Pall/π,
say A→ aβ, let G(A→ aβ) = (R/π,Σ , PA→aβ, S0) be an SDG such that

PA→aβ = {P (B, b) ∈ Pall/π | B ∈ R/π, b ∈ Σ , B 6= A}
∪{P (B, b) ∈ Pall/π | B ∈ R/π, b ∈ Σ , b 6= a}
∪{A→ aβ},

S0 = B((ε, w, ε), π),

where w ∈ Q. Then, let G be the set of SDGs such that

G = {G(A→ aβ) | A→ aβ is in Pall/π}.

If Q is an RS then, comparing SDGs in G, we can obtain the correct hypothesis in
polynomial time. We call this algorithm ARS . This is already shown algorithm in (Tajima
et al., 2004).

4. Learning via membership queries and counterexamples

If we can obtain an RS by counterexamples then we can construct a query learning algorithm
of SDLs via membership and equivalence queries. This is not a polynomial time algorithm.
The basic idea of this algorithm is gathering an RS by counterexamples and results of
membership queries which concern with Condition 3.

Definition 6 Let A ∈ R/π. r = (p,m, s) ∈ A is called “shortest” if |p| ≤ |p′| for any
r′ = (p′,m′, s′) ∈ A.

At first, it calls EQUIV (∅) and obtains a positive counterexample w. Let Q = {w}, then
it simulates the learning algorithm ARS with Q as the input. If ARS makes a hypothesis
grammar Gh then EQUIV (Gh) is called. The equivalence query returns “yes” when Q

187

Tajima Kikui

contains an RS of Lt. If a counterexample is returned then W is increased by it. When
repeating ARS , the output of ARS is not different to the previous execution, Q is increased
by invalid words. For every A ∈ R/π and a ∈ Σ such that A has an invalid word aw,
p ·aw ·short(r) is added to Q where r = (p,m, s) ∈ A is the shortest. It causes increasing of
R. Repeating these process, Q becomes an RS and ARS outputs a correct hypothesis. We
call this algorithm A2. Algorithm1 is the learning algorithm A2. This algorithm is made
by adding a hypothesis check function to ARS .

Algorithm 1: SDL learning via membership and equivalence queries A2

Output: a hypothesis SDG Gh
P0 := ∅, Q := ∅;
Gh := ∅;
if EQUIV (Gh) = yes then

output Gh and terminate;
else

let the positive counterexample be w;
W := {y ∈ Σ+ | x, z ∈ Σ ∗, x · y · z = w};
Q := Q ∪ {w};

end
repeat

W := W ∪ {y ∈ Σ+ | x, z ∈ Σ ∗, x · y · z ∈ Q};
R := {(x, y, z) | z ∈ Σ ∗, x, y ∈ Σ+, x · y · z ∈ Q} ∪ {(ε, w, ε) | w ∈ Q};
G := ∅;
repeat

find T (r, w) for all r ∈ R and w ∈W and define the equivalence relation
π
=;

delete incorrect rules from Pall/π by Conditions 1, 2 and 3;
find P (A, a) for all A ∈ R/π and a ∈ Σ ;
make the set G of SDLs;
W ′ := ∅;
for every pair of G1, G2 ∈ G and every A ∈ R/π do

find a word w ∈ (LG1(A)− LG2(A)) ∪ (LG2(A)− LG1(A)) such that |w| is
bounded by a polynomial;
W ′ := W ′ ∪ {w};

end
for all w ∈W ′ do

W := W ∪ {y ∈ Σ+ | x, z ∈ Σ ∗, x · y · z = w};
end

until W ′ = ∅;
call [hypothesis check];
P0 := Pall/π;

until forever ;

188

An example distribution of SDL

Algorithm 2: [hypothesis check]

if Pall/π = P0 then
for every A ∈ R/π do

if there exists an invalid word aw ∈W such that a ≤Σ b for any invalid word bu of
A then

let r = (p,m, s) ∈ A be the shortest;
Q := Q ∪ {p · aw · short(r)};
W := W ∪ {w′|x, y ∈ Σ ∗, xw′y = p · aw · short(r)};

end

end

else
select Gh ∈ G, arbitrarily;
if EQUIV (Gh) = yes then

output Gh and terminate;
end
let the counterexample be w;
W := W ∪ {y ∈ Σ+ | x, z ∈ Σ ∗, x · y · z = w};

end

Definition 7 Let G = (N,Σ , P, S) be an SDG and Q ⊆ L(G). We define

UG(Q) = {A→ β ∈ P |w ∈ Q,α, γ ∈ (N ∪ Σ)∗, S
∗⇒
G
αAγ⇒

G
αβγ

∗⇒
G
w}

i.e. the set of rules to derive Q.

Now, the following lemma holds.

Lemma 8 Let Q1 be the Q in A2 when “hypothesis check” is called. Let Q2 be also
the Q when the next time “hypothesis check” is called after Q1 is updated. It holds that
UGt(Q2) ⊃ UGt(Q1).

Proof Suppose that UGt(Q1) = UGt(Q2). Then Q2 can be derived by rules in UGt(Q1).
From the assumption, Q2 ⊃ Q1. In addition Pall/π = P0 holds. It implies that the coun-
terexample given when Aw holds Q1 makes no change to Pall/π. Thus, Gall can not generate
the counterexample. It implies that UGt(Q2) ⊃ UGt(Q1). This is contradiction.

Time complexity of A2 is as follows.

Lemma 9 The size of |R| in A2 is bounded by O(l422|Nt||Σ |).

Proof The time complexity of Algorithm A2 except for calling “hypothesis check” is bounded
by a polynomial of |Nt|, |Σ | and the length of the longest counterexample l because of the
complexity of ARS in (Tajima et al., 2004).

189

Tajima Kikui

When “hypothesis check” is called, there are two cases : Pall/π = P0 and Pall/π 6= P0.
Pall/π = P0 occurs at most |Nt||Σ | times because of Lemma 8. In addition, Pall/π 6= P0

occurs at most |R||Σ | times because every counterexample which satisfies Pall/π 6= P0 makes
R/π finer or some rules in Pall/π are deleted.

Now, we evaluate |R|. |R| is O(|Q|k2) where k is the length of the longest word in Q.
At the beginning of A2, k is bounded by the length of the longest counterexample l. Also
the length of the longest word in Q is bounded by l. The length of the longest word in Q is
doubled when Q is updated. Thus, k = O(l2|Nt||Σ |) and |R| = O(|Q|l222|Nt||Σ |).

At the beginning of A2, |Q| is bounded by O(l2). We can conclude that |R| = O(l422|Nt||Σ |).

This size is not a polynomial. Also, the time complexity of A2 is not bounded by a
polynomial. The enumeration of all SDGs with the size of n takes O(|Nt||Nt||Σ |) time. We
can say that A2 is an improved algorithm comparing to the enumerating algorithm.

5. An example distribution to probabilistic learning

Suppose an example distribution such that Pr(A) > Pr(B1)Pr(B2) + ρ satisfies for any
A ∈ Nt and for any B1, B2 ∈ Nt ∪ Σ . Here, ρ is a fixed value such that 0 < ρ and
Pr(A) >> ρ for any A ∈ Nt. From Angluin’s result(Angluin, 1987), i-th equivalence
queries can be replaced by checking consistency of

ni =
1

ε

(
ln

1

δ
+ (ln 2)(i+ 1)

)
examples. When the learner can use membership queries and random examples drawn by
the distribution, We can modify the “hypothesis check” procedure to Ap in Algorithm3.

This procedure is replaced calling EQUIV () by random examples. If there needs to
expand Q by invalid words then select the most frequent appearing nonterminal A and
whose invalid word is added to Q.

Now, we evaluate the sample complexity of Ap. If the most appearing B ∈ R/π does
not correspond to any A ∈ Nt then B must corresponds to β ∈ (Nt∪Σ)+ such that |β| ≥ 2.
It implies that the expectation Pr(β) < Pr(A) for some A ∈ Nt from the assumption. In
addition, Pr(A)−Pr(β) > ρ holds. Let XA be a random variable whether A is used to derive
an example word. Also, let Xβ be that of β to the derivation. From Chernoff-Hoeffding
bound, it holds that

Pr(XA ≥ µA + n
ρ

2
) ≤ exp(

−2n2ρ2 14
n

)

and

Pr(Xβ ≤ µβ − n
ρ

2
) ≤ exp(

−2n2ρ2 14
n

)

for n examples. Here, µA = n · Pr(A), µβ = n · Pr(β).

190

An example distribution of SDL

Algorithm 3: probabilistic hypothesis check : Ap

if Pall/π = P0 then
take n0 examples;
select the most frequent appearing A ∈ R/π which has an invalid word aw ∈W ;
let r = (p,m, s) ∈ A be the shortest;
Q := Q ∪ {p · aw · short(r)};
W := W ∪ {w′|x, y ∈ Σ ∗, xw′y = p · aw · short(r)};

else
select Gh ∈ G, arbitrarily;
let i be the number of counts to reach here;
take 1

ε

(
ln 1

δ + (ln 2)(i+ 1)
)

examples;
if all examples are consistent then

output Gh and terminate;
else

for every example word w which is not consistent with L(Gh) do
W := W ∪ {y ∈ Σ+ | x, z ∈ Σ ∗, x · y · z = w};

end

end

end

If Pr(XA ≥ µA + nρ2) · Pr(Xβ ≤ µβ − nρ2) ≤ δ holds then Q is increased by an invalid
word of A ∈ Nt. Now,

Pr(XA ≥ µA + n
ρ

2
) · Pr(Xβ ≤ µβ − n

ρ

2
) ≤ exp(

−4n2ρ2 14
n

)

= exp(−nρ2)

Thus,

exp(−nρ2) ≤ δ

−nρ2 ≤ ln(δ)

n ≥ ln(δ)

−ρ2

=
ln(1δ)

ρ2

If ρ2 > ε then this value is less than

ni =
1

ε

(
ln

1

δ
+ (ln 2)(i+ 1)

)
which is examples replaced by i-th equivalence query. Thus, the algorithm Ap needs poly-
nomial size examples to terminate when ρ2 > ε.

191

Tajima Kikui

6. Conclusion

We show a special example distribution which can be represented by differences of nonter-
minal appearance probability. On this distribution, SDLs can be learnable in polynomial
time with membership queries and random examples. The probabilistic learning algorithm
shown in this paper is collecting a representative sample using our algorithm in (Tajima
et al., 2004). For the future works, it is needed that finding more relaxed distributions and
conditions to polynomial time learning.

References

D. Angluin. Learning regular languages from queries and counterexamples. Inf. & Comp.,
75:87–106, 1987.

C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine Learn-
ing, 27:125–138, 1997.

S. A. Goldman and H. D. Mathias. Teaching a smart learner. Journal of Comp. and Sys.
Sci., 52:255–267, 1996.

M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.

H. Ishizaka. Polynomial time learnability of simple deterministic languages. Machine Learn-
ing, 5:151–164, 1990.

A. J. Korenjak and J. E. Hopcroft. Simple deterministic languages. In Proc. IEEE 7th
Annu. Symp. on Switching and Automata Theory, pages 36–46, 1966.

Y. Tajima. Teachability of a subclass of simple deterministic languages. IEICE Trans. on
Info. & Sys., E96-D:2733–2742, 2013.

Y. Tajima, E. Tomita, M. Wakatsuki, and M. Terada. Polynomial time learning of simple
deterministic languages via queries and a representative sample. Theor. Comp. Sci., 329:
203–221, 2004.

L. G. Valiant. A theory of the learnable. Comm. of the ACM, 27:1134–1142, 1984.

M. Wakatsuki and E. Tomita. An improved branching algorithm for checking the equivalence
of simple dpda’s and its worst-case time complexity (in japanese). Trans. of IEICE, J74-
D-I:595–603, 1991.

192

	Introduction
	Preliminaries
	SDL learning algorithm via membership queries and a representative sample
	Learning via membership queries and counterexamples
	An example distribution to probabilistic learning
	Conclusion

